48 research outputs found

    Исследования гидравлических сопротивлений при движении в трубах золошлаковых тампонажно- закладочных суспензий

    Get PDF
    Експериментально досліджено залежність гідравлічного опору від швидкості руху та концентрації золошлакових суспензій при течії по трубах. Встановлена критична швидкість руху концентрованих гідросумішей.Dependence of hydraulic resistance is experimentally set from the rate of movement of ash-slag suspensions at a flow on pipes. The critical speed of motion of the concentrated slurries is set

    NotCal04; comparison/ calibration 14C records 26-50 cal kyr BP

    Get PDF
    Author Posting. © Arizona Board of Regents on behalf of the University of Arizona, 2004. This article is posted here by permission of Dept. of Geosciences, University of Arizona for personal use, not for redistribution. The definitive version was published in Radiocarbon 46 (2004): 1225-1238.The radiocarbon calibration curve IntCal04 extends back to 26 cal kyr BP. While several high-resolution records exist beyond this limit, these data sets exhibit discrepancies of up to several millennia. As a result, no calibration curve for the time range 26–50 cal kyr BP can be recommended as yet, but in this paper the IntCal04 working group compares the available data sets and offers a discussion of the information that they hold

    Remote sensing of volcanic CO2, HF, HCl, SO2, and BrO in the downwind plume of Mt. Etna

    Get PDF
    Remote sensing of the gaseous composition of non-eruptive, passively degassing volcanic plumes can be a tool to gain insight into volcano interior processes. Here, we report on a field study in September 2015 that demonstrates the feasibility of remotely measuring the volcanic enhancements of carbon dioxide (CO2), hydrogen fluoride (HF), hydrogen chloride (HCl), sulfur dioxide (SO2), and bromine monoxide (BrO) in the downwind plume of Mt. Etna using portable and rugged spectroscopic instrumentation. To this end, we operated the Fourier transform spectrometer EM27/SUN for the shortwave-infrared (SWIR) spectral range together with a co-mounted UV spectrometer on a mobile platform in direct-sun view at 5 to 10 km distance from the summit craters. The 3 days reported here cover several plume traverses and a sunrise measurement. For all days, intra-plume HF, HCl, SO2, and BrO vertical column densities (VCDs) were reliably measured exceeding 5 x 10(16), 2 x 10(17), 5 x 10(17), and 1 x 10(14) molec cm(2), with an estimated precision of 2.2 x 10(15), 1.3 x 10(16), 3.6 x 10(16), and 1.3 x 10(13) molec cm(2), respectively. Given that CO2, unlike the other measured gases, has a large and wellmixed atmospheric background, derivation of volcanic CO2 VCD enhancements (Delta CO2) required compensating for changes in altitude of the observing platform and for background concentration variability. The first challenge was met by simultaneously measuring the overhead oxygen (O-2) columns and assuming covariation of O-2 and CO2 with altitude. The atmospheric CO2 background was found by identifying background soundings via the coemitted volcanic gases. The inferred Delta CO2 occasionally exceeded 2 x 10(19) molec cm(-2) with an estimated precision of 3.7 x 10(18) molec cm(-2) given typical atmospheric background VCDs of 7 to 8 x 10(21) molec cm(-2). While the correlations of Delta CO2 with the other measured volcanic gases confirm the detection of volcanic CO2 enhancements, correlations were found of variable significance (R-2 ranging between 0.88 and 0.00). The intra-plume VCD ratios Delta CO2/SO2, SO2/HF, SO2/HCl, and SO2/BrO were in the range 7.1 to 35.4, 5.02 to 21.2, 1.54 to 3.43, and 2.9 x 10(3) to 12.5 x 10(3), respectively, showing pronounced day-to-day and intra-day variability

    Trigonometric Regressive Spectral Analysis Reliably Maps Dynamic Changes in Baroreflex Sensitivity and Autonomic Tone: The Effect of Gender and Age

    Get PDF
    BACKGROUND: The assessment of baroreflex sensitivity (BRS) has emerged as prognostic tool in cardiology. Although available computer-assisted methods, measuring spontaneous fluctuations of heart rate and blood pressure in the time and frequency domain are easily applicable, they do not allow for quantification of BRS during cardiovascular adaption processes. This, however, seems an essential criterion for clinical application. We evaluated a novel algorithm based on trigonometric regression regarding its ability to map dynamic changes in BRS and autonomic tone during cardiovascular provocation in relation to gender and age. METHODOLOGY/PRINCIPAL FINDINGS: We continuously recorded systemic arterial pressure, electrocardiogram and respiration in 23 young subjects (25+/-2 years) and 22 middle-aged subjects (56+/-4 years) during cardiovascular autonomic testing (metronomic breathing, Valsalva manoeuvre, head-up tilt). Baroreflex- and spectral analysis was performed using the algorithm of trigonometric regressive spectral analysis. There was an age-related decline in spontaneous BRS and high frequency oscillations of RR intervals. Changes in autonomic tone evoked by cardiovascular provocation were observed as shifts in the ratio of low to high frequency oscillations of RR intervals and blood pressure. Respiration at 0.1 Hz elicited an increase in BRS while head-up tilt and Valsalva manoeuvre resulted in a downregulation of BRS. The extent of autonomic adaption was in general more pronounced in young individuals and declined stronger with age in women than in men. CONCLUSIONS/SIGNIFICANCE: The trigonometric regressive spectral analysis reliably maps age- and gender-related differences in baroreflex- and autonomic function and is able to describe adaption processes of baroreceptor circuit during cardiovascular stimulation. Hence, this novel algorithm may be a useful screening tool to detect abnormalities in cardiovascular adaption processes even when resting values appear to be normal

    Confocal Laser Scanning Microscopy, a New In Vivo Diagnostic Tool for Schistosomiasis

    Get PDF
    BACKGROUND: The gold standard for the diagnosis of schistosomiasis is the detection of the parasite's characteristic eggs in urine, stool, or rectal and bladder biopsy specimens. Direct detection of eggs is difficult and not always possible in patients with low egg-shedding rates. Confocal laser scanning microscopy (CLSM) permits non-invasive cell imaging in vivo and is an established way of obtaining high-resolution images and 3-dimensional reconstructions. Recently, CLSM was shown to be a suitable method to visualize Schistosoma mansoni eggs within the mucosa of dissected mouse gut. In this case, we evaluated the suitability of CLSM to detect eggs of Schistosoma haematobium in a patient with urinary schistosomiasis and low egg-shedding rates. METHODOLOGY/PRINCIPAL FINDINGS: The confocal laser scanning microscope used in this study was based on a scanning laser system for imaging the retina of a living eye, the Heidelberg Retina Tomograph II, in combination with a lens system (image modality). Standard light cystoscopy was performed using a rigid cystoscope under general anaesthesia. The CLSM endoscope was then passed through the working channel of the rigid cystoscope. The mucosal tissue of the bladder was scanned using CLSM. Schistoma haematobium eggs appeared as bright structures, with the characteristic egg shape and typical terminal spine. CONCLUSION/SIGNIFICANCE: We were able to detect schistosomal eggs in the urothelium of a patient with urinary schistosomiasis. Thus, CLSM may be a suitable tool for the diagnosis of schistosomiasis in humans, especially in cases where standard diagnostic tools are not suitable

    IntCal04 terrestrial radiocarbon age calibration, 0-26 cal kyr BP

    Get PDF
    Author Posting. © Arizona Board of Regents on behalf of the University of Arizona, 2004. This article is posted here by permission of Dept. of Geosciences, University of Arizona for personal use, not for redistribution. The definitive version was published in Radiocarbon 46 (2004): 1029-1058.A new calibration curve for the conversion of radiocarbon ages to calibrated (cal) ages has been constructed and internationally ratified to replace IntCal98, which extended from 0–24 cal kyr BP (Before Present, 0 cal BP = AD 1950). The new calibration data set for terrestrial samples extends from 0–26 cal kyr BP, but with much higher resolution beyond 11.4 cal kyr BP than IntCal98. Dendrochronologically-dated tree-ring samples cover the period from 0–12.4 cal kyr BP. Beyond the end of the tree rings, data from marine records (corals and foraminifera) are converted to the atmospheric equivalent with a site-specific marine reservoir correction to provide terrestrial calibration from 12.4–26.0 cal kyr BP. A substantial enhancement relative to IntCal98 is the introduction of a coherent statistical approach based on a random walk model, which takes into account the uncertainty in both the calendar age and the 14C age to calculate the underlying calibration curve (Buck and Blackwell, this issue). The tree-ring data sets, sources of uncertainty, and regional offsets are discussed here. The marine data sets and calibration curve for marine samples from the surface mixed layer (Marine04) are discussed in brief, but details are presented in Hughen et al. (this issue a). We do not make a recommendation for calibration beyond 26 cal kyr BP at this time; however, potential calibration data sets are compared in another paper (van der Plicht et al., this issue)

    An arrhythmogenic metabolite in atrial fibrillation

    Get PDF
    Abstract Background Long-chain acyl-carnitines (ACs) are potential arrhythmogenic metabolites. Their role in atrial fibrillation (AF) remains incompletely understood. Using a systems medicine approach, we assessed the contribution of C18:1AC to AF by analysing its in vitro effects on cardiac electrophysiology and metabolism, and translated our findings into the human setting. Methods and results Human iPSC-derived engineered heart tissue was exposed to C18:1AC. A biphasic effect on contractile force was observed: short exposure enhanced contractile force, but elicited spontaneous contractions and impaired Ca2+ handling. Continuous exposure provoked an impairment of contractile force. In human atrial mitochondria from AF individuals, C18:1AC inhibited respiration. In a population-based cohort as well as a cohort of patients, high C18:1AC serum concentrations were associated with the incidence and prevalence of AF. Conclusion Our data provide evidence for an arrhythmogenic potential of the metabolite C18:1AC. The metabolite interferes with mitochondrial metabolism, thereby contributing to contractile dysfunction and shows predictive potential as novel circulating biomarker for risk of AF
    corecore